Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.482
Filtrar
1.
Arch Microbiol ; 206(4): 148, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462558

RESUMO

Pseudomonas aeruginosa is an opportunistic gram-negative pathogenic microorganism that poses a significant challenge in clinical treatment. Antibiotics exhibit limited efficacy against mature biofilm, culminating in an increase in the number of antibiotic-resistant strains. Therefore, novel strategies are essential to enhance the effectiveness of antibiotics against Pseudomonas aeruginosa biofilms. D-histidine has been previously identified as a prospective anti-biofilm agent. However, limited attention has been directed towards its impact on Pseudomonas aeruginosa. Therefore, this study was undertaken to explore the effect of D-histidine on Pseudomonas aeruginosa in vitro. Our results demonstrated that D-histidine downregulated the mRNA expression of virulence and quorum sensing (QS)-associated genes in Pseudomonas aeruginosa PAO1 without affecting bacterial growth. Swarming and swimming motility tests revealed that D-histidine significantly reduced the motility and pathogenicity of PAO1. Moreover, crystal violet staining and confocal laser scanning microscopy demonstrated that D-histidine inhibited biofilm formation and triggered the disassembly of mature biofilms. Notably, D-histidine increased the susceptibility of PAO1 to amikacin compared to that in the amikacin-alone group. These findings underscore the efficacy of D-histidine in combating Pseudomonas aeruginosa by reducing biofilm formation and increasing biofilm disassembly. Moreover, the combination of amikacin and D-histidine induced a synergistic effect against Pseudomonas aeruginosa biofilms, suggesting the potential utility of D-histidine as a preventive strategy against biofilm-associated infections caused by Pseudomonas aeruginosa.


Assuntos
Amicacina , Infecções por Pseudomonas , Humanos , Amicacina/farmacologia , Amicacina/metabolismo , Amicacina/uso terapêutico , Pseudomonas aeruginosa , Histidina/farmacologia , Histidina/metabolismo , Histidina/uso terapêutico , Biofilmes , Percepção de Quorum , Antibacterianos/química , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1270667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881370

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant opportunistic human pathogen that utilizes two-component systems (TCSs) to sense pathophysiological signals and coordinate virulence. P. aeruginosa contains 64 sensor histidine kinases (HKs) and 72 response regulators (RRs) that play important roles in metabolism, bacterial physiology, and virulence. However, the role of some TCSs in virulence remains uncharacterized. In this study, we evaluated the virulence potential of some uncharacterized sensor HK and RR knockouts in P. aeruginosa using a Galleria mellonella infection model. Furthermore, we demonstrated that KdpD and AauS HKs regulate virulence by affecting P. aeruginosa biofilm formation and motility. Both ΔkdpD and ΔaauS showed reduced biofilm and motility which were confirmed by restored phenotypes upon complementation. Moreover, ΔkdpD and ΔaauS exhibited increased survival of HeLa cells and G. mellonella during in vivo infection. Altered expression of the transcriptional regulators anR and lasR, along with the virulence genes lasA, pelA, cupA, pqsA, pqsB, pqsC, and pqsD in the mutant strains elucidated the mechanism by which ΔkdpD and ΔaauS affect virulence. These findings confirm that kdpD and aauS play important roles in P. aeruginosa pathogenesis by regulating biofilm formation and motility.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Virulência/genética , Percepção de Quorum , Histidina/farmacologia , Células HeLa , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia
3.
Phytomedicine ; 118: 154937, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393831

RESUMO

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Polygala , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polygala/genética , RNA Ribossômico 16S , Histidina/metabolismo , Histidina/farmacologia , Histidina/uso terapêutico , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Fígado , Fezes , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511130

RESUMO

Hydroxyapatite adsorbs various substances, but little is known about the effects on oral bacteria of adsorption onto hydroxyapatite derived from scallop shells. In the present study, we analyzed the effects of adsorption of Streptococcus mutans onto scallop-derived hydroxyapatite. When scallop-derived hydroxyapatite was mixed with S. mutans, a high proportion of the bacterial cells adsorbed onto the hydroxyapatite in a time-dependent manner. An RNA sequencing analysis of S. mutans adsorbed onto hydroxyapatite showed that the upregulation of genes resulted in abnormalities in pathways involved in glycogen and histidine metabolism and biosynthesis compared with cells in the absence of hydroxyapatite. S. mutans adsorbed onto hydroxyapatite was not killed, but the growth of the bacteria was inhibited. Electron microscopy showed morphological changes in S. mutans cells adsorbed onto hydroxyapatite. Our results suggest that hydroxyapatite derived from scallop shells showed a high adsorption ability for S. mutans. This hydroxyapatite also caused changes in gene expression related to the metabolic and biosynthetic processes, including the glycogen and histidine of S. mutans, which may result in a morphological change in the surface layer and the inhibition of the growth of the bacteria.


Assuntos
Durapatita , Streptococcus mutans , Durapatita/farmacologia , Adsorção , Hidroxiapatitas/farmacologia , Histidina/farmacologia , Glicogênio , Saliva/fisiologia
5.
Vopr Virusol ; 68(1): 18-25, 2023 03 11.
Artigo em Russo | MEDLINE | ID: mdl-36961232

RESUMO

INTRODUCTION: Currently, low molecular-weight compounds are being developed as potential inhibitors of CoVs replication, targeting various stages of the replication cycle, such as major protease inhibitors and nucleoside analogs. Viroporins can be alternative protein targets. The aim of this study is to identify antiviral properties of histidine derivatives with cage substituents in relation to pandemic strain SARS-CoV-2 in vitro. MATERIALS AND METHODS: Combination of histidine with aminoadamantane and boron cluster anion [B10H10]2 (compounds IIV) was carried out by classical peptide synthesis. Compound were identified by modern physicochemical methods. Antiviral properties were studied in vitro on a monolayer of Vero E6 cells infected with SARS-CoV-2 (alpha strain) with simultaneous administration of compounds and virus. RESULTS: Derivatives of amino acid histidine with carbocycles and boron cluster were synthesized and their antiviral activity against SARS-CoV-2 was studied in vitro. Histidine derivatives with carbocycles and [B10H10]2 have the ability to suppress virus replication. The solubility of substances in aqueous media can be increased due to formation of hydrochloride or sodium salt. DISCUSSION: 2HCl*H-His-Rim (I) showed some effect of suppressing replication of SARS-CoV-2 at a viral load of 100 doses and concentration 31.2 g/ml. This is explained by the weakly basic properties of compound I. CONCLUSION: The presented synthetic compounds showed moderate antiviral activity against SARS-CoV-2. The obtained compounds can be used as model structures for creating new direct-acting drugs against modern strains of coronaviruses.


Assuntos
Antivirais , COVID-19 , Animais , Chlorocebus aethiops , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Histidina/farmacologia , Boro/farmacologia , Células Vero , Replicação Viral
6.
Environ Sci Pollut Res Int ; 30(17): 51261-51270, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36809613

RESUMO

This work is focused on the effect of lethal and sub-lethal copper (Cu) concentrations on the free amino acid and polyphenol production by the marine diatom Phaeodactylum tricornutum (P. tricornutum) after 12, 18, and 21 days of exposure. The concentrations of 10 amino acids (arginine, aspartic acid, glutamic acid, histidine, lysine, methionine, proline, valine, isoleucine, and phenylalanine) and 10 polyphenols (gallic acid, protocatechuic acid, p-coumaric acid, ferulic acid, catechin, vanillic acid, epicatechin syringic acid, rutin, and gentisic acid) were measured by RP-HPLC. Under lethal doses of Cu, free amino acids reached levels significantly higher than those in the control cells (up to 21.9 times higher), where histidine and methionine showed the highest increases (up to 37.4 and 65.8 times higher, respectively). The total phenolic content also increased up to 11.3 and 5.59 times higher compared to the reference cells, showing gallic acid the highest increase (45.8 times greater). The antioxidant activities of cells exposed to Cu were also enhanced with increasing doses of Cu(II). They were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging ability (RSA), cupric ion reducing antioxidant capacity (CUPRAC), and ferric reducing antioxidant power (FRAP) assays. Malonaldehyde (MDA) exhibited the same tendency: cells grown at the highest lethal Cu concentration yielded the highest MDA level. These findings reflect the involvement of amino acids and polyphenols in protective mechanisms to overcome the toxicity of copper in marine microalgae.


Assuntos
Diatomáceas , Polifenóis , Polifenóis/farmacologia , Antioxidantes/farmacologia , Cobre/química , Aminoácidos , Histidina/farmacologia , Ácido Gálico/farmacologia , Metionina
7.
Physiol Behav ; 261: 114084, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640957

RESUMO

Dried bonito dashi, a complex mixture of sour, bitter, and umami substances as well as over 400 odorants, is the most widely used Japanese fish broth that enhances palatability of various dishes. Recent studies have suggested that prior experience with dried bonito dashi produces strong enhancement of subsequent intake and preference for dried bonito dashi. The present study investigated taste substances in dried bonito dashi that enhance subsequent dashi preference by its prior exposure. Male C57BL/6N mice were initially exposed for 10 days to (1) dried bonito dashi, (2) a chemical mixture of taste substances identified in dried bonito dashi (artificially reconstituted dashi), or (3) individual chemical solutions such as NaCl, monosodium l-glutamate (MSG), inosine 5'-monophosphate (IMP), lactic acid, histidine, and glucose. Intakes of 0.01-100% dried bonito dashi with water were then measured using ascending concentration series of 2-day two-bottle choice tests. Prior exposure to 1-100% dashi enhanced subsequent dashi preference in a concentration-dependent manner and the greatest effects were attained with 10-100% dashi exposure. Exposure to the reconstituted dashi also enhanced subsequent dashi preference. Among individual chemical solutions, 0.1% IMP produced modest enhancement of subsequent dashi preference, but neither NaCl, MSG, histidine, lactic acid, nor glucose did. These results suggest that IMP is at least a key substance that produces experience-based enhancement of dried bonito dashi preference.


Assuntos
Perciformes , Paladar , Camundongos , Masculino , Animais , Cloreto de Sódio/farmacologia , Histidina/farmacologia , Camundongos Endogâmicos C57BL , Glucose/farmacologia , Ácido Láctico , Glutamato de Sódio/farmacologia , Inosina Monofosfato/farmacologia
8.
Life Sci ; 314: 121355, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596407

RESUMO

AIMS: This study mainly evaluated the protective mechanism of histidine against the hepatic oxidative stress after high-salt exposure (HSE) through combined analysis of non-targeted metabolomics and biological metabolic networks. MATERIALS AND METHODS: Dahl salt-sensitive (SS) rats were fed with normal-salt diet or HSE ± histidine in addition to drinking water for 14 days. Gas chromatography-mass spectrometry was used to analyze the hepatic metabolites. The metabolic profile was analyzed by SIMCA-14.1, the metabolic correlation network was performed using Gephi-0.9.2, and pathway enrichment was analyzed using MetaboAnalyst 5.0 online website. KEY FINDINGS: Results indicated that HSE disturbed the hepatic metabolic profile, generated abnormal liver metabolism and exacerbated oxidative stress. Histidine supplementation significantly reversed the hepatic metabolic profile. Of note, 14 differential metabolic pathways were enriched after histidine supplementation, most of which played an important role in ameliorating redox and nitric oxide (NO) metabolism. Histidine administration decreased the levels of hydroperoxide and malondialdehyde, and increased the activities of antioxidant enzymes (Catalase, Superoxide Dismutase, Glutathione S-transferase and Glutathione reductases). Histidine effectively enhanced the endogenous synthesis of glutathione by increasing the levels of glutamate and cysteine, thereby enhancing the antioxidant capacity of the glutathione system. After histidine administration, lysine, glutamate, and hypotaurine owned a higher metabolic centrality in the correlation network. In addition, histidine could also effectively increase the endogenous synthesis of NO by enhancing the L-arginine/NO pathway. SIGNIFICANCE: This study offers new insights into the metabolic mechanisms underlying the antioxidant protective effect of histidine on the liver.


Assuntos
Antioxidantes , Histidina , Estresse Oxidativo , Cloreto de Sódio na Dieta , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Glutamatos/farmacologia , Glutationa/metabolismo , Histidina/farmacologia , Histidina/metabolismo , Fígado/metabolismo , Metabolômica , Oxirredução , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Superóxido Dismutase/metabolismo
9.
J Proteomics ; 273: 104791, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538967

RESUMO

Cryopreservation may reduce sperm fertility due to cryodamage including physical-chemical and oxidative stress damages. As a powerful antioxidant, melatonin has been reported to improve cryoprotective effect of sperm. However, the molecular mechanism of melatonin on cryopreserved ram sperm hasn't been fully understand. Give this, this study aimed to investigate the postthaw motility parameters, antioxidative enzyme activities and lipid peroxidation, as well as proteomic, metabolomic changes of Huang-huai ram spermatozoa with freezing medium supplemented with melatonin. Melatonin was firstly replenished to the medium to yield five different final concentrations: 0.1, 0.5, 1.0, 1.5, and 2.0 mM. A control (NC) group without melatonin replenishment was included. Protective effects of melatonin as evidenced by postthaw motility, activities of T-AOC, T-SOD, GSH-Px, CAT, contents of MDA, 4-HNE, as well as acrosome integrity, plasma membrane integrity, with 0.5 mM being the most effective concentration (MC group). Furthermore, 29 differentially abundant proteins involving in sperm functions were screened among Fresh, NC and MC groups of samples (n = 5) based on the 4D-LFQ, with 7 of them upregulated in Fresh and MC groups. 26 differentially abundant metabolites were obtained involving in sperm metabolism among the three groups of samples (n = 8) based on the UHPLC-QE-MS, with 18 of them upregulated in Fresh and MC groups. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the abundance changes of vital proteins and metabolites related to sperm function. Particularly, several proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine may be potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa. In conclusion, a dose-dependent replenishment of melatonin to freezing medium protected ram spermatozoa during cryopreservation, which can improve motility, antioxidant enzyme activities, reduce levels of lipid peroxidation products, modify the proteomic and metabolomic profiling of cryopreserved ram spermatozoa through reduction of oxidative stress, maintenance of OXPHOS and microtubule structure. SIGNIFICANCE: Melatonin, a powerful antioxidant protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner, with 0.5 mM being the most effective concentration. Furthermore, sequencing results based on the 4D-LFQ combined with the UHPLC-QE-MS indicated that melatonin modifies proteomic and metabolomic profiling of ram sperm during cryopreservation. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the expression changes of vital proteins and metabolites related to sperm metabolism and function. Particularly, several potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa were acquired, proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine.


Assuntos
Melatonina , Preservação do Sêmen , Animais , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Criopreservação/métodos , Histidina/metabolismo , Histidina/farmacologia , Melatonina/farmacologia , Melatonina/metabolismo , Proteômica , Sêmen , Preservação do Sêmen/métodos , Ovinos , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Xantinas/metabolismo , Xantinas/farmacologia , Metabolômica
10.
Biochimie ; 207: 137-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36351496

RESUMO

The established correlation between obesity and cognitive impairment portrays pharmacological products aimed at both disorders as an important therapeutic advance. Modulation of dysregulated adipokines and neurotransmitters is hence a critical aspect of the assessment of in-use drugs. At the cellular level, repairments in brain barrier integrity and cognitive flexibility are the main checkpoints. The aim of this study was to investigate whether melatonin and histidine, alone or in combination, could produce weight loss, meanwhile improve the cognitive processes. In this study, obese rat model was established by feeding high fat diet (HFD) composed of 25% fats (soybean oil) for 8 weeks, accompanied by melatonin (10 mg/kg), histidine (780 mg/kg), and combination of both in conventional form and nanoform. At the end of the study, adiposity hormones, neuronal monoamines and amino acids, brain derived neurotrophic factor (BDNF) and zonula occluden-1 (ZO-1) were assessed. HFD feeding resulted in significant weight gain and poor performance on cognitive test. Coadministration of histidine in the nanoform increased the level of ZO-1; an indicator of improving the brain barrier integrity, along with adjusting the adipokines and neurotransmitters levels, which had a positive impact on learning tasks. Cotreatment with melatonin resulted in an increase in the level of BDNF, marking ameliorated synaptic anomalies and learning disabilities, while reducing weight gain. On the other hand, the combination of melatonin and histidine reinstated the synaptic plasticity as well as brain barrier junctions, as demonstrated by increased levels of BDNF and ZO-1, positively affecting weight loss and the intellectual function.


Assuntos
Dieta Hiperlipídica , Melatonina , Ratos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Histidina/farmacologia , Histidina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Adipocinas , Obesidade/metabolismo , Aumento de Peso , Cognição , Redução de Peso
11.
J Ethnopharmacol ; 300: 115626, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049653

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Moxibustion is a traditional medical intervention of traditional Chinese medicine. It refers to the direct or indirect application of ignited moxa wool made of mugwort leaves to acupuncture points or other specific parts of the body for either treating or preventing diseases. Moxibustion has been proven to be effective in treating skin lesions of psoriasis. AIM OF THE STUDY: This study was performed to elucidate molecular mechanisms underlying the effects of moxibustion treatment on imiquimod-induced psoriatic mice. MATERIALS AND METHODS: We established an imiquimod (IMQ)-induced psoriatic mice (Model) and assessed the effects of moxibustion (Moxi) treatment on skin lesions of psoriatic mice by the PASI scores and expressions of inflammation-related factors relative to normal control mice (NC). We then performed nuclear magnetic resonance (NMR)-based metabolomic analysis on the skin tissues of the NC, Model and Moxi-treated mice to address metabolic differences among the three groups. RESULTS: Moxi mice showed reduced PASI scores and decreased expressions of the pro-inflammatory cytokines IL-8, IL-17A and IL-23 relative to Model mice. Compared with the Model group, the NC and Moxi groups shared 9 characteristic metabolites and 4 significantly altered metabolic pathways except for taurine and hypotaurine metabolism uniquely identified in the NC group. To a certain extent, moxibustion treatment improved metabolic disorders of skin lesions of psoriatic mice by decreasing glucose, valine, asparagine, aspartate and alanine-mediated cell proliferation and synthesis of scaffold proteins, alleviating histidine-mediated hyperproliferation of blood vessels, and promoting triacylglycerol decomposition. CONCLUSIONS: This study reveals the molecular mechanisms underlying the effects of moxibustion treatment on the skin lesions of psoriasis, potentially improving the clinical efficacy of moxibustion.


Assuntos
Moxibustão , Psoríase , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Asparagina/metabolismo , Asparagina/farmacologia , Asparagina/uso terapêutico , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Ácido Aspártico/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Histidina/uso terapêutico , Imiquimode , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucina-23/farmacologia , Interleucina-23/uso terapêutico , Interleucina-8/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Psoríase/tratamento farmacológico , Psoríase/terapia , Pele , Taurina/metabolismo , Triglicerídeos/metabolismo , Valina/metabolismo , Valina/farmacologia , Valina/uso terapêutico
12.
Nutrients ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364753

RESUMO

The carnosine and anserine, which represent histidine dipeptides (HD), are abundant in chicken broth (CB). HD are endogenous dipeptide that has excellent antioxidant and immunomodulatory effects. The immunomodulatory effect of CB hydrolysate (CBH) and HD in cyclophosphamide (CTX)-induced immunosuppressed mice was examined in this study. CBH and HD were given to mice via oral gavage for 15 days, accompanied by intraperitoneal CTX administration to induce immunosuppression. CBH and HD treatment were observed to reduce immune organ atrophy (p < 0.05) and stimulate the proliferation of splenic lymphocytes (p < 0.05) while improving white blood cell, immunoglobulin M (IgM), IgG, and IgA levels (p < 0.05). Moreover, CBH and HD strongly stimulated interleukin-2 (IL-2) and interferon-gamma (IFN-γ) production by up-regulating IL-2 and IFN-γ mRNA expression (p < 0.05) while inhibiting interleukin-10 (IL-10) overproduction and IL-10 mRNA expression (p < 0.05). In addition, CBH and HD prevented the inhibition of the nitric oxide (NP)/cyclic guanosine monophosphate-cyclic adenosine monophosphate (cGMP-cAMP)/protein kinase A (PKA) signaling pathway (p < 0.05). These results indicate that CBH and HD have the potential to prevent immunosuppression induced by CTX. Our data demonstrate that CBH can effectively improve the immune capacity of immunosuppressed mice similar to the same amount of purified HD, which indicates that CBH plays its role through its own HD.


Assuntos
Galinhas , Interleucina-2 , Camundongos , Animais , Galinhas/genética , Interleucina-2/genética , Histidina/farmacologia , Interleucina-10 , Dipeptídeos , Ciclofosfamida/toxicidade , Terapia de Imunossupressão , RNA Mensageiro
13.
Future Med Chem ; 14(24): 1847-1864, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444737

RESUMO

Aims: The screening of antimycobacterial benzo[d]thiazole-2-carboxamides against ATP-phosphoribosyl transferase (ATP-PRTase) was conducted. Materials & methods: The antitubercular potential of compounds 1 and 2 against ATP-PRTase was assessed through the determination of half maximal effective concentration (EC50) and binding constant (Kd), as well as competitive inhibitory studies and studies of perturbation of secondary structure, molecular modeling and L-histidine complementation assay. Results & conclusion: Compounds 1n and 2a significantly inhibited ATP-PRTase as evidenced by their EC50 and Kd values and the perturbation of the secondary structure study. Compound 1n exhibited stronger competitive inhibition toward ATP compared with 2a. The inhibition of the growth of Mycobacterium tuberculosis by targeting the L-histidine biosynthesis pathway and molecular modeling studies further supported the inhibition of ATP-PRTase.


Assuntos
ATP Fosforribosiltransferase , Mycobacterium tuberculosis , Tiazóis/farmacologia , ATP Fosforribosiltransferase/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Antituberculosos/química , Trifosfato de Adenosina
14.
Biosci Biotechnol Biochem ; 87(1): 63-73, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36367541

RESUMO

Antimicrobial peptides (AMPs) show broad-spectrum microbicidal activity against bacteria, fungi, and viruses, and have been considered as one of the most promising candidates to overcome bacterial antimicrobial resistance. Structural modification of AMPs is an effective strategy to develop high-efficiency and low-toxicity antibacterial agents. A series of peptides GHaR6R, GHaR7R, GHaR8R, and GHaR9W with arginine replacement of histidine (His) derived from temporin-GHa of Hylarana guentheri were designed and synthesized. These derived peptides exhibit antibacterial activity against Staphylococcus aureus, and GHaR8R exerts bactericidal effect within 15 min at 4 × MIC (25 µm). The derived peptides caused rapid depolarization of bacteria, and the cell membrane damage was monitored using quartz crystal microbalance with dissipation assay, which suggests that they target cell membranes to exert antibacterial effects. The derived peptides can effectively eradicate mature biofilms of S. aureus. Taken together, the derived peptides are promising antibacterial agent candidates against S. aureus.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Histidina/farmacologia , Arginina/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Bactérias
15.
Sci Total Environ ; 850: 158019, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973547

RESUMO

Forest environment has many health benefits, and negative air ions (NAI) is one of the major forest environmental factors. Many studies have explored the effect of forest environment on cardiac autonomic nervous function, while forest NAI in the among function and the underlying mechanism still remain unclear. To explore the associations and molecular linkages between short-term exposure to forest NAI and heart rate variability (HRV), a repeated-measure panel study was conducted among 31 healthy adults. Participants were randomly selected to stay in a forest park for 3 days and 2 nights. Individual exposures including NAI were monitored simultaneously and HRV indices were measured repeatedly at the follow-up period. Urine samples were collected for non-targeted metabolomics analysis. Mixed-effect models were adopted to evaluate associations among NAI, HRV indices and metabolites. The median of NAI concentration was 68.11 (138.20) cm-3 during the study period. Short-term exposure to forest NAI was associated with the ameliorative HRV indices, especially the excitatory parasympathetic nerve. For instance, per interquartile range increase of 5-min moving average of NAI was associated with 9.99 % (95%CI: 8.95 %, 11.03 %) increase of power in high frequency. Eight metabolites were associated with NAI exposure. The down-regulated tyrosine metabolism was firstly observed, followed by other amino acid metabolic alterations. The NAI-related metabolic changes reflect the reduction of inflammation and oxidative stress. HRV indices were associated with 25 metabolites, mainly including arginine, proline and histidine metabolism. Short-term exposure to forest NAI is beneficial to HRV, especially to the parasympathetic nerve activity, by successively disturbing different metabolic pathways which mainly reflect the increased anti-inflammation and the reduced inflammation. The results will provide epidemiological evidences for developing forest therapy and improving cardiac autonomic nervous function.


Assuntos
Poluentes Atmosféricos , Material Particulado , Adulto , Poluentes Atmosféricos/análise , Arginina/análise , Florestas , Frequência Cardíaca , Histidina/análise , Histidina/farmacologia , Humanos , Íons/análise , Material Particulado/análise , Prolina/análise , Prolina/farmacologia , Tirosina/análise , Tirosina/farmacologia
16.
Parasit Vectors ; 15(1): 282, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933400

RESUMO

BACKGROUND: Histidine acid phosphatase (HAP), a member of the histidine phosphatase superfamily, is widely found in parasites and is also a potential vaccine antigen or drug target. However, the biological function of HAP in Haemonchus contortus is still unclear. METHODS: We cloned the HAP gene from H. contortus (Hc-HAP) and expressed the purified recombinant Hc-HAP (rHc-HAP) protein. The transcription of the Hc-HAP gene in the eggs, infective third-stage larvae (L3s), exsheathed third-stage larvae (xL3s) and adults (females/males) was analyzed by quantitative real-time-PCR (qPCR). An immunofluorescence assay was also used to detect the localization of Hc-HAP expression in adult worms. The effect of rHc-HAP on the function of peripheral blood mononuclear cells (PBMCs) was observed by co-culture of rHc-HAP protein with goat PBMCs. RESULTS: The qPCR results revealed that the Hc-HAP gene was transcribed at a higher level in the L3 and xL3 stages that there were gender differences in transcription at the adult stage, with females exhibiting higher transcription than males. Moreover, Hc-HAP was mainly expressed in adult intestinal microvilli. Additionally, western blot results revealed that rHc-HAP could be detected in goat sera artificially infected with H. contortus. In the experiments, rHc-HAP bound to goat PBMCs and released nitric oxide. The rHc-HAP also induced the expression of interferon gamma (IFN-γ) and the phosphorylated STAT 1 transcription factor, while inhibiting interleukin-4 expression. CONCLUSIONS: The results shows that rHc-HAP stimulated the IFN-γ/STAT1 signaling pathway and enabled polarization of PBMCs toward T-helper 1 immune responses.


Assuntos
Hemoncose , Haemonchus , Fosfatase Ácida , Animais , Feminino , Cabras/parasitologia , Proteínas de Helminto , Histidina/farmacologia , Imunidade , Leucócitos Mononucleares , Masculino
17.
Sci Total Environ ; 850: 157772, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934030

RESUMO

As global pollution, microplastics pollution has aroused growing concerns. In our experiment, the effect of microplastics acute exposure on the liver of swordtail fish was investigated by using LC-MS metabolomics. Fishes treated with high concentration polystyrene microspheres (1 µm) for 72 h were divided into three concentration groups: (A) no microplastics, (B): 1 × 106 microspheres L-1, (C): 1 × 107 microspheres L-1. Metabolomic analysis indicated that exposure to microplastics caused alterations of metabolic profiles in swordtail fish, including 37 differential metabolites were identified in B vs. A, screened out ten significant metabolites, which involved 14 metabolic pathways. One hundred three differential metabolites were identified in C vs. A, screened out 16 significant metabolites, which involved 30 metabolic pathways. Six significant metabolites were overlapping in group B vs. A and C vs. A; they are 3-hydroxyanthranilic acid, l-histidine, citrulline, linoleic acid, pantothenate, and xanthine. In addition, four metabolic pathways are overlapping in group B vs. A and C vs. A; they are beta-alanine metabolism, biosynthesis of amino acids, linoleic acid metabolism, and aminoacyl-tRNA biosynthesis. These differential metabolites were involved in oxidative stress, immune function, energy metabolism, sugar metabolism, lipid metabolism, molecule transport, and weakened feed utilization, growth performance, nutrient metabolism, and animal growth. Furthermore, we found that the number of interfered amino acids and microplastics showed a dose-effect. In summary, great attention should be paid to the potential impact of microplastics on aquatic organisms.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Animais , Cromatografia Líquida , Citrulina/metabolismo , Citrulina/farmacologia , Ciprinodontiformes/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Fígado/metabolismo , Metabolômica , Microplásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia , Açúcares/metabolismo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/metabolismo , Xantinas/metabolismo , Xantinas/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia
18.
Transplantation ; 106(9): 1770-1776, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001489

RESUMO

BACKGROUND: We previously reported that modified extracellular-type trehalose-containing Kyoto (MK) solution, which contains a trypsin inhibitor (ulinastatin), significantly improved the islet yield compared with University of Wisconsin (UW) preservation, which is the gold standard for organ preservation for islet isolation. In this study, we evaluated the efficiency of a modified histidine-lactobionate (MHL) solution in addition to UW or MK solution. The MHL solution has a high sodium-low potassium composition with low viscosity compared with the UW solution. Moreover, similar to MK solution, MHL solution also contains ulinastatin. METHODS: Porcine pancreata were preserved in UW, MK, or MHL solution, followed by islet isolation. An optimized number (1500 IE) of isolated islets from each group were then transplanted into streptozotocin-induced diabetic mice. RESULTS: The islet yield before and after purification was significantly higher in the MHL group than in the UW group. On the contrary, the islet yield before and after purification was not significantly different between the MHL and MK groups. Preserving the porcine pancreata in MHL solution improved the outcome of islet transplantation in streptozotocin-induced diabetic mice compared with that in UW solution. CONCLUSIONS: Pancreas preservation with MHL solution preserves islet function better than UW solution. The effect of MHL solution is similar to that of MK solution, suggesting that MHL solution can be used as an alternative to MK solution for pancreatic islet transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Soluções para Preservação de Órgãos , Adenosina , Alopurinol/farmacologia , Animais , Diabetes Mellitus Experimental/cirurgia , Dissacarídeos , Glutationa/farmacologia , Histidina/farmacologia , Humanos , Insulina/farmacologia , Camundongos , Soluções para Preservação de Órgãos/farmacologia , Pâncreas/cirurgia , Rafinose/farmacologia , Estreptozocina , Suínos , Universidades , Wisconsin
19.
PLoS One ; 17(8): e0273921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044512

RESUMO

Transplantation is lifesaving and the most effective treatment for end-stage organ failure. The transplantation success depends on the functional preservation of organs prior to transplantation. Currently, the University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate (HTK) are the most commonly used preservation solutions. Despite intensive efforts, the functional preservation of solid organs prior to transplantation is limited to hours. In this study, we modified the UW solution containing components from both the UW and HTK solutions and analyzed their tissue-protective effect against ischemic injury. The composition of the UW solution was changed by reducing hydroxyethyl starch concentration and adding Histidine/Histidine-HCl which is the main component of HTK solution. Additionally, the preservation solutions were supplemented with melatonin and glucosamine. The protective effects of the preservation solutions were assessed by biochemical and microscopical analysis at 2, 10, 24, and 72 h after preserving the rat kidneys with static cold storage. Lactate dehydrogenase (LDH) activity in preservation solutions was measured at 2, 10, 24, and 72. It was not detectable at 2 h of preservation in all groups and 10 h of preservation in modified UW+melatonin (mUW-m) and modified UW+glucosamine (mUW-g) groups. At the 72nd hour, the lowest LDH activity (0.91 IU/g (0.63-1.17)) was measured in the mUW-m group. In comparison to the UW group, histopathological damage score was low in modified UW (mUW), mUW-m, and mUW-g groups at 10, 24, and 72 hours. The mUW-m solution at low temperature was an effective and suitable solution to protect renal tissue for up to 72 h.


Assuntos
Isquemia , Rim , Melatonina , Soluções para Preservação de Órgãos , Adenosina , Alopurinol/farmacologia , Animais , Glucosamina , Glucose/farmacologia , Glutationa/farmacologia , Histidina/farmacologia , Insulina/farmacologia , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Rim/patologia , Manitol/farmacologia , Melatonina/farmacologia , Preservação de Órgãos/métodos , Soluções para Preservação de Órgãos/química , Soluções para Preservação de Órgãos/farmacologia , Cloreto de Potássio/farmacologia , Rafinose/farmacologia , Ratos
20.
Cell Rep ; 39(11): 110937, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705057

RESUMO

Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6-/- mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury.


Assuntos
Endotoxemia , Etanol , Histidina , Mucosa Intestinal , Canais de Cátion TRPV , Acetaldeído/toxicidade , Animais , Células CACO-2 , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Etanol/toxicidade , Histidina/farmacologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...